計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
ニューラルネットワークによるマルコフジャンプ過程の学習と推定
西口 憲一土屋 和雄
著者情報
ジャーナル フリー

1991 年 27 巻 11 号 p. 1296-1301

詳細
抄録
The estimation of Markov jump processes from noisy observations is a nonlinear estimation problem with strong nonlinearity. A new approach to solve the estimation problem is presented, using a neural network model. The neural network is designed to minimize an energy function, which consists of two terms: one represents reliability of observation data and the other imposes penalties on estimates on the basis of a priori information about the processes to be estimated. It is shown that nearly optimal estimates are obtained using the neural network as a sliding window filter. The quality of the estimates depends on the ratio between two terms in the energy function. It is also shown that an adequate value of the ratio is learnable from samples of true processes and observation data using a stochastic approximation method.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top