計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
線形確率モデルに対するロバストな逐次同定法の収束性
魚崎 勝司大海 沢治
著者情報
ジャーナル フリー

1991 年 27 巻 8 号 p. 878-883

詳細
抄録
Following the idea of Huber's maximum likelihood-type estimator (M-estimator), Polyak and Tsypkin proposed a robust recursive identification method analogous to the recursive least squares method. They seek for an estimator minimizing the maximum asymptotic variance over some convex class of innovation distributions. However, they did not discuss its convergence properties throughly because of the difficulties due to the introduction of some approximations in the identification method and correlations between observations. In this paper, we discuss the convergence properties of the robust recursive identification method for linear stochastic models from the viewpoints of ODE approach and martingale convergence theory. We present two convergence theorems for the robust identification method.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top