計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
区間結合強度をもつニューラルネットとそのファジィ回帰分析への応用
石渕 久生岡田 英彦田中 英夫
著者情報
ジャーナル フリー

1992 年 28 巻 12 号 p. 1484-1491

詳細
抄録
This paper proposes a new architecture of neural networks and derives its learning algorithms. The neural network with the proposed architecture has interval weights and interval biases. A cost function is defined using the interval output from the neural network and the corresponding target interval. A learning algorithm is derived from the cost function in a similar manner as the back-propagation algorithm. Two variations of the learning algorithm are also derived based on the inclusion relation between the interval output and the target interval. A method of fuzzification is shown to apply the neural network to the fuzzy regression analysis.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top