Abstract
In this paper, a method is proposed whereby both contact force exerted by a flexible manipulator, and position of end-effector while in contact with a surface are controlled. We approximate elastic deformations by means of B-spline functions and derive dynamic equations of joint angles, vibration of the flexible link, and constraint force. A controller for the hybrid position/force control of the flexible manipulator is designed on the basis of the singular perturbation method. Simulation results are shown.