計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
非定常環境中で動作する階層構造学習オートマトンの新しい学習アルゴリズム
最上 義夫馬場 則夫反田 幸男
著者情報
ジャーナル フリー

1994 年 30 巻 8 号 p. 953-958

詳細
抄録
For hierarchical structure learning automata operating in a nonstationary random environment, in this paper, a new learning algorithm is constructed by extending the relative reward strength algorithm proposed by Simha and Kurose. The learning propertiy of our algorithm is considered theoretically, and it is proved that the path probability of the optimal path can be approached 1 as much as possible by using our algorithm. In numerical simulation, the number of iterations of our algorithm is compared with that of the hierarchical structure learning algorithm proposed by Thathachar and Ramakrishnan, and it is shown that our algorithm can find the optimal path after the smaller number of iterations than that of the algorithm of Thathachar and Ramakrishnan.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top