計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
Support Vector Machines Controlling Noise Influence Directly
Min YOONHirotaka NAKAYAMAYeboon YUN
著者情報
ジャーナル フリー

2003 年 39 巻 1 号 p. 82-84

詳細
抄録
Generalization error bounds in Support Vector Machines (SVMs) are based on the minimum distance between training points and the separating hyperplane. Especially, the error of soft margin algorithm can be bounded by a target margin and some norms of the slack vector. In this paper, we formulate a soft margin algorithm considering the corruption by noise in data directly. Additionally, through a numerical example, we compare the proposed method with a conventional soft margin algorithm.
著者関連情報
© The Society of Instrument and Control Engineers (SICE)
前の記事 次の記事
feedback
Top