計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
セルラニューラルネットワークおよびその異常診断への応用
出力関数の設計によるセルラニューラルネットワークの効率化
章 忠難波 道弘川畑 洋昭金川 明弘
著者情報
ジャーナル フリー

2003 年 39 巻 3 号 p. 209-217

詳細
抄録
It is well known that the cellular neural network (CNN) is very effective as an associative memory medium. And the saturation (output) function plays an important role in CNN, because it affects the operation, the stable equilibrium points and the performance of CNN. However, to the best of our knowledge a systematic design procedure for the output function is not available in the literature. In this paper, we present a simple, yet, effective design method for the two and three-output functions. To demonstrate the effectiveness of the output functions, we tested CNN on synthesized images. In addition, we applied CNN to recongnize Chinese characteres and diagnose liver diseases, and obtained very encouraging results.
著者関連情報
© 社団法人 計測自動制御学会
次の記事
feedback
Top