Transactions of the Society of Instrument and Control Engineers
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
Boundary Tangency Manifolds for State Feedback Systems and Index Formula
Ryuji ENOMOTOMasasuke SHIMA
Author information
JOURNAL FREE ACCESS

2003 Volume 39 Issue 7 Pages 646-653

Details
Abstract
The paper deals with the global asymptotic stabilization problem for time-invariant general nonlinear state equations from the viewpoint of the topological classification of state feedback controlled systems. A notion of “Boundary tangency manifolds of the state equation” can be derived from the generalized Poincaré-Hopf index formula by C.C. Pugh and C. McCord. We discuss the relation between the boundary tangency manifolds of the state equation and the index formula on the input manifold which is a natural geometrical object for the differentiable state feedback control law. We also introduce terms of the dissipative boundary and the neutral boundary of the state equation and discuss the elementary results for the global asymptotic stabilization problem.
Content from these authors
© The Society of Instrument and Control Engineers (SICE)
Previous article Next article
feedback
Top