計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
状態フィードバック系の境界接点多様体の交叉理論
榎本 隆二島 公脩
著者情報
ジャーナル フリー

2003 年 39 巻 7 号 p. 654-661

詳細
抄録
This paper presents a new approach to the classification problem of topological structures of feedback controlled systems for time-invariant general nonlinear state equations. The generalized Poincaré-Hopf index theorem by C.C. Pugh and C. McCord leads us to a notion of “Boundary tangency manifolds of the state equation”. We show a topological method to judge whether the controlled system is circumscribed or inscribed at a point of the boundary of a compact and connected submanifold in the state space. For this purpose, we discuss the intersection theory for boundary tangency manifolds and an input manifold which is the geometrical object for a differentiable state feedback control law.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top