計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
強化学習のための矩形基底による自律分散型関数近似
小林 祐一湯浅 秀男細江 繁幸
著者情報
ジャーナル フリー

2004 年 40 巻 8 号 p. 849-858

詳細
抄録
Adaptive resolution of function approximator is known to be important when we apply reinforcement learning to unknown problems. We propose to apply successive division and integration scheme of function approximation to Temporal Difference learning based on local curvature. TD learning in continuous state space is based on non-constant value function approximation, which requires the simplicity of function approximator representation. We define bases and local complexity of function approximator in the similar way to the autonomous decentralized function approximation, but they are much simpler. The simplicity of approximator element bring us much less computation and easier analysis. The proposed function approximator is proved to be effective through function approximation problem and a reinforcement learning common problem, pendulum swing-up task and acrobot stabilizing task.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top