計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
ランダムタイリングとGibbs-samplingを用いた多次元状態-行動空間における強化学習
木村 元
著者情報
ジャーナル フリー

2006 年 42 巻 12 号 p. 1336-1343

詳細
抄録
In real-robot applications, learning controllers are often required to obtain control rules over high-dimensional continuous state-action space. Random tile-coding is a promising method to deal with high-dimensional state space for representing the state value function. However, there is no standard reinforcement learning scheme to deal with action selection in high-dimensional action space, especially the probability of action variables are mutually dependent. This paper introduces a new action selection scheme using random tile-coding and Gibbs sampling, and shows the Q-learning algorithm applying the proposed scheme. We demonstrate it through a Rod in maze problem and a redundant arm reaching task.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top