SCIS & ISIS
SCIS & ISIS 2006
セッションID: SU-E1-2
会議情報

SU-E1 Neural Networks (3)
N-Version Programming of Artificial Neural Networks for Land Cover Classification from Satellite Data
*Kenneth James MackinEiji NunohiroMasanori OhshiroKazuko Yamasaki
著者情報
キーワード: Neural Networks, Satellite Data, MODIS
会議録・要旨集 フリー

詳細
抄録
Terra and Aqua, 2 satellites launched by the NASA-centered international Earth Observing System project, house MODIS (Moderate Resolution Imaging Spectroradiometer) sensors. Moderate resolution remote sensing allows the quantifying of land surface type and extent, which can be used to monitor changes in land cover and land use for extended periods of time. In this paper, we propose applying a probabilistically optimal ensemble technique, based on fault masking among individual classifier for N-version programming. We create an optimal ensemble of artificial neural networks and use the majority voting result to predict land surface cover from MODIS data. We show that an optimal ensemble of neural networks greatly improves the classification error rate of land cover type.
著者関連情報
© 2006 Japan Society for Fuzzy Theory and Intelligent Informatics
前の記事 次の記事
feedback
Top