SCIS & ISIS
SCIS & ISIS 2010
セッションID: TH-A3-5
会議情報
Semantic Analysis of Twitter Contents Using PLSA, and LDA
*Tae-Yeon KimMoohong MinTaebok YoonJee-Hyong Lee
著者情報
キーワード: Twitter, Semantic Analysis, LDA
会議録・要旨集 フリー

詳細
抄録
A twitter user posts a 140-character-limited text named 'Tweet'. So twitter is called micro-blog. In May of 2010, users have posted 15 billion tweets since the service launched. But, tweets are not like web text, it is more personal, temporary, and short contented. Thus twitter's attributes make it difficult to extract keywords from tweets. In this paper, we introduce topic extraction methods using Probabilistic Latent Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA) specified in twitter. We show the novel approach to analyze the contents of Twitter user.
著者関連情報
© 2010 Japan Society for Fuzzy Theory and Intelligent Informatics
前の記事 次の記事
feedback
Top