2021 Volume 17 Pages 239-245
The emission of Asian dust in arid regions of East Asia is controlled by many land surface parameters such as snow cover, soil moisture, and vegetation. In climate models, these factors are represented by the threshold friction velocity u*t, but its treatment has large uncertainties. Here we show that the treatment of u*t is important for estimating the emissions, transport, and climate impacts of Asian dust. Our global aerosol model simulates dust event frequencies that better agree with observations in East Asia when u*t over a smooth surface is changed from the default value of 0.23 m s−1 to an observation-based value of 0.40 m s−1. Also, seasonal Asian dust emissions become more variable, increasing by 31% in spring and decreasing by 46% in summer and fall, and the annual amounts of Asian dust transported and deposited over the North Pacific (Arctic) increase by 43% and 49% (130% and 73%), respectively. Our results demonstrate that better representation of u*t in climate models is necessary to improve estimates of the emissions and transport of Asian dust and better understand its roles in the Earth system, such as its interactions with radiation, clouds, snow/ice albedo, and land and ocean biogeochemistry.