Journal of the Society of Powder Technology, Japan
Online ISSN : 1883-7239
Print ISSN : 0386-6157
ISSN-L : 0386-6157
Original Paper
The Synthesis of YAG:Ce3+ Phosphor by Mechanical Method
Kazuaki KanaiYoshifumi FukuiTakahiro KozawaAkira KondoMakio Naito
Author information
JOURNAL FREE ACCESS

2017 Volume 54 Issue 1 Pages 32-36

Details
Abstract

Ce3+-doped Y3Al5O12 (Y2.97Al5O12:Ce0.033+, YAG:Ce3+) phosphors have been widely used for white light emitting diodes (LEDs). Here, we report on the effect of Al(OH)3 powder addition on the mechanical synthesis of YAG:Ce3+ phosphor. The YAG:Ce3+ phosphors were synthesized by the mechanical method using an attrition-type mill. When Al(OH)3 was added at 12.5 ‍mass% to the raw powder materials and milled, the synthesis of YAG:Ce3+ phosphor was achieved at the vessel temperature of 438°C. The crystalline, structure, luminescence spectra and internal quantum yield of YAG phosphor were evaluated by X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy and a quantum yield measurement device, respectively. The synthesized YAG:Ce3+ phosphor revealed the maximum internal quantum yield of 27%.

Content from these authors
© 2017 The Society of Powder Technology, Japan
Previous article Next article
feedback
Top