Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
Online ISSN : 2188-4749
Print ISSN : 2188-4730
第48回ISCIE「確率システム理論と応用」国際シンポジウム(2016年11月, 福岡)
A Stochastic Optimization Method Using Weighted Empirical Distribution Function
Kiyoharu TagawaShun Miyanaga
著者情報
ジャーナル フリー

2017 年 2017 巻 p. 117-122

詳細
抄録

This paper provides a new approach to solve a Chance Constrained Problem (CCP). The CCP is formulated via Cumulative Distribution Function (CDF). Hence, instead of the primitive Monte Carlo simulation, an approximation of CDF can be used to evaluate the solution of the CCP. In order to approximate CDF, two kinds of techniques, Empirical CDF (ECDF) and Weighted Empirical CDF (W_ECDF), are presented. Furthermore, for solving the CCP efficiently, a new Differential Evolution (DE) based optimization method combined with either ECDF or W_ECDF is proposed. The results of numerical experiments show that DE with W_ECDF outperforms DE with ECDF.

著者関連情報
© 2017 ISCIE Symposium on Stochastic Systems Theory and Its Applications
前の記事 次の記事
feedback
Top