Transactions of the Atomic Energy Society of Japan
Online ISSN : 2186-2931
Print ISSN : 1347-2879
ISSN-L : 1347-2879
Article
Fault Diagnosis System of Electromagnetic Valve Using Neural Network Filter
Shoji HAYASHITomohiro ODAKAJousuke KUROIWAHisakazu OGURA
Author information
JOURNAL FREE ACCESS

2008 Volume 7 Issue 3 Pages 186-193

Details
Abstract
  This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection.
Content from these authors
© 2008 Atomic Energy Society of Japan
Previous article Next article
feedback
Top