TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN
Online ISSN : 1884-0485
ISSN-L : 1884-0485
Computational Study on Finned Reusable Rocket Aerodynamics during Turnover
Takuya AOGAKIKeiichi KITAMURASatoshi NONAKA
著者情報
ジャーナル フリー

2019 年 17 巻 2 号 p. 104-110

詳細
抄録

The development of a fully reusable vertical-takeoff-and-vertical-landing (VTVL) rocket is indispensable for reducing space transportation costs. However, there are many technical issues associated with such vehicles, such as turnover maneuvers during return flight where the pitching moment plays a key role. It is known that aerodynamic characteristics can be controlled by installing aerodynamic devices, but the relationship between the aerodynamic characteristics and the flowfields has not been explored. To clarify this relationship using computational fluid dynamics (CFD), we investigated these flowfields and aerodynamic characteristics, in the case where we install such devices (fins) in the nose part of a reusable rocket. We found that vortices form downstream of the aerodynamic devices. For angles of attack between 0 and 90 degrees (in which the fins are located in the upstream portion), these vortices significantly affect the surface pressure on the rocket and increase the pitching moment. On the other hand, for AOAs between 90 to 180 degrees (in which the fins are in the downstream portion), the effect of these vortices on the on-surface pressure is negligible, and only vortices formed near the surface of the fins increase the pitching moment.

著者関連情報
© 2019 The Japan Society for Aeronautical and Space Sciences
次の記事
feedback
Top