Symposium on the Chemistry of Natural Products, symposium papers
Online ISSN : 2433-1856
53
Conference information
16 Enzymatic Synthesis of Unnatural Novel Biologically Active Compounds by Engineered Plant Polyketide Synthases(Oral Presentation)
Hiroyuki MoritaTakahiro MoriMakoto YamashitaToshiyuki WakimotoIkuro Abe
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Pages 91-96

Details
Abstract
HsPKS1 from Huperzia serrata is a type III polyketide synthase (PKS) with remarkable substrate tolerance and catalytic potential. Here we present the synthesis of unnatural novel polyketide-alkaloid hybrid molecules by exploiting the enzyme reaction using precursor-directed and structure-based approaches. HsPKS1 produced novel pyridoisoindole (or benzopyridoisoindole) with the 6.5.6-fused (or 6.6.5.6-fused) ring system by the condensation of 2-carbamoylbenzoyl-CoA (or 3-carbamoyl-2-naphthoyl-CoA), a synthetic nitrogen-containing non-physiological starter substrate, with two molecules of malonyl-CoA. The structure-based S348G mutant not only extended the product chain length, but also altered the cyclization mechanism to produce a biologically active, ring-expanded 6.7.6-fused dibenzoazepine, by the condensation of 2-carbamoylbenzoyl-CoA with three malonyl-CoAs. Thus, the basic nitrogen atom and the structure-based mutagenesis enabled additional C-C and C-N bond formation to generate the novel polyketide-alkaloid scaffold. Benzalacetone synthase (BAS) from Rheum palmatum is a structurally simple, plant-specific type III PKS, which catalyzes the one-step decarboxylative condensation of malonyl-CoA with 4-coumaroyl-CoA. The type III PKS exhibits unusually broad substrate specificity and notable catalytic versatility. Here we report that R. palmatum BAS efficiently produces a series of unnatural, novel tetramic acid derivatives by the condensation of malonyl-CoA with aminoacyl-CoA thioesters, chemically synthesized from L- and D-amino acids. Remarkably, the novel tetramic acid dimer from D-phenylalanoyl-CoA, showed moderate antiproliferative activity against murine leukemia P388 cells.
Content from these authors
© 2011 the committee on digitalization of presentations delivered in symposiums on natural organic compounds
Previous article Next article
feedback
Top