Symposium on the Chemistry of Natural Products, symposium papers
Online ISSN : 2433-1856
53
Conference information
17 Sesquarterpenes (C_<35> Terpenes) from Bacteria : Identifications of Unique Biosynthetic Enzymes and Search for Novel Natural Products(Oral Presentation)
Tsutomu SatoHiroko HoshinoSatoru YoshidaKazuo TakizawaYuriko OritoRyosuke TakagiMizuki TannoHanayo KudoEri OnoMami NakajimaTsutomu Hoshino
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Pages 97-102

Details
Abstract
In this study, mono- and pentacyclic C_<35> terpenes from Bacillus subtilis were biosynthesized via the cyclization of C_<35> isoprenoid by using purified enzymes, including the first identified new terpene cyclase, tetrapreny1-13-curcumene synthase, that shows no sequence homology to any of the known terpene cyclases. Based on these findings, we propose that these C_<35> terpenes are called the new family of "sesquarterpenes." This study demonstrated that a tetrapreny1-β-curcumene cyclase (TC) from B. subtilis, which was originally identified as a sesquarterpene cyclase converting a head-to-tail type of monocycle to a pentacycle, also cyclized a tail-to-tail type of linear squalene into a bicyclic triterpenol, 8α-Hydroxypolypoda-13,17,21-triene. The 8α-Hydroxypolypoda-13,17,21-triene was found to be a natural triterpene from B. megaterium, suggesting that the TC is bifunctional, cyclizing both tetrapreny1-α-curcumene and squalene in vivo. This is the first report describing the bifunctional terpene cyclase, which biosynthesizes 2 classes of cyclic terpenes with different numbers of carbons as natural products in the organism. Non-pathogenic Mycobacterium species also produce cyclic sesquarterpenes, which are biosynthesized via cyclization of Z-type C_<35> polyprenyl diphosphate. To provide deeper insight into the biosynthesis of sesquarterpenes, we carried out functional analyses of three Z-prenyltransferase homologues in M vanbaalenii identified by genomic analysis. Mvan_3822, a novel bi-functional Z-prenyltransferase, biosynthesizes C_<35>-heptaprenyl diphosphate as a main product from E,E-FPP and E,E,E-GGPP, but produces a C_<50>-decaprenyl diphosphate from GPP. Mvan_1705 is a novel Z,E,E-GGPP synthase. In addition, novel cyclic C_<35>-terpenes, 14E- and 14Z-dehydroheptaprenylcycline, were identified as minor metabolites in non-pathogenic Mycobacterium cells. Sesquarterpenes could be biosynthesized by two routes, in which E- and Z-geometric isomers of heptaprenyl diphosphate are produced from E,E-FPP and E,E,E-GGPP, and the prenylreductase responsible for the biosynthesis of sesquarterpenes may work to reduce both E- and Z-prenyl residues. The studies on sesquarterpenes promise to be an attractive field for expanding our understanding of the terpene world.
Content from these authors
© 2011 the committee on digitalization of presentations delivered in symposiums on natural organic compounds
Previous article Next article
feedback
Top