鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
多流体高炉シミュレータによる水素吹き込み操業の解析
埜上 洋柏谷 悦章山田 大祐
著者情報
ジャーナル オープンアクセス HTML

2014 年 100 巻 2 号 p. 251-255

詳細
抄録
Recent years various trials to decrease carbon dioxide emission from iron and steelmaking industries have been made. One of these trials is utilization of hydrogen in blast furnace process, and this study performed numerical simulation of blast furnace operation with hydrogen injection through tuyere. The simulations were carried out under the conditions of constant bosh gas flow rate, adiabatic flame temperature and hot metal temperature. The simulation results showed that the temperature level in the stack part was decreased with increase in the hydrogen injection ratio. This resulted in the lowering of the top gas temperature and retarded the reduction of iron oxide especially one of magnetite. The injection of the hydrogen remarkably decreased the coke rate. The converted reducing agent rate, that is sum of coke rate and six times (molecular weight ratio of carbon to hydrogen gas) as hydrogen rate showed small change. Although this decrease in coke rate deteriorated the permeability of the burden materials in the furnace, pressure drop in the furnace was reduced. Since the molar flow rate of the reducing gas was kept constant, the decrease in the gas density due to the increase in the hydrogen content was mainly considered to lead the decrease in the pressure drop. The water gas shift reaction played an important role in the generation of the field of gas composition, thus this reaction has to be carefully discussed for further utilization of hydrogen in blast furnace.
著者関連情報
© 2014 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top