鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
分析・解析
中性子回折ラインプロファイル解析によるフェライト系およびオーステナイト系ステンレス鋼の引張変形中の転位増殖その場観察
佐藤 成男黒田 あす美佐藤 こずえ熊谷 正芳ステファヌス ハルヨ友田 陽齋藤 洋一轟 秀和小貫 祐介鈴木 茂
著者情報
ジャーナル フリー HTML

2018 年 104 巻 4 号 p. 201-207

詳細
抄録

To investigate the characteristics of dislocation evolution in ferritic and austenitic stainless steels under tensile deformation, neutron diffraction line-profile analysis was carried out. The austenitic steel exhibited higher work hardening than the ferritic steel. The difference in the work hardening ability between the two steels was explained with the dislocation density estimated by the line-profile analysis. The higher dislocation density of the austenitic steel would originate from its lower stacking fault energy. Dislocation arrangement parameters indicated that the strength of interaction between dislocations in the austenitic steel was stronger than that in the ferritic steel. This would mainly originate from the difference in dislocation substructures; while dislocation tangle, which can be prompted by the cross slip, was expected in the ferritic steels, highly dense dislocation walls induced by planar glide of dislocations as well as the tangle were expected in the austenitic steel. It was confirmed that the stronger interaction between dislocations in the austenitic steel resulted in the smaller strain field of dislocation. Consequently, the coefficient for the root square of dislocation density in the Bailey-Hirsh equation became smaller in the austenitic steel. X-ray diffraction line-profile analysis was also carried out for the tensile-deformed specimens. The dislocation arrangement parameter evaluated by X-ray diffraction was smaller than that evaluated by neutron diffraction. This would be caused by the difference in the relationship between the loading direction and the scattering vector. On the other hand, the dislocation density evaluated by both methods was almost identical.

著者関連情報
© 2018 一般社団法人 日本鉄鋼協会
前の記事 次の記事
feedback
Top