Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Surface Treatment and Corrosion
Effect of Surface Textures of Iron substrate on the Crystal Orientation Relationship between Electrodeposited Zinc and Iron
Bungo KuboSatoshi OueTakashi FutabaAkinobu KobayashiYasuto GotoHiroaki Nakano
Author information
JOURNALS FREE ACCESS FULL-TEXT HTML

2018 Volume 104 Issue 6 Pages 322-330

Details
Abstract

Zn deposition was performed galvanostatically at 1500 A/m2 and a charge of 1.48×104 C/m2 onto both the high purity electrolytic iron and the cold rolled steel sheets in an agitated sulfate solution at 40 °C to investigate the effect of surface textures of Fe on the crystal orientation relationship between Fe and Zn. Zn deposited on the high purity electrolytic iron with large grain size showed the orientation relationship of {110}Fe//{0001}Zn. However, with increasing the angle of inclination of {110} Fe plane from the surface of substrate, the deviation of orientation relationship of {110}Fe//{0001}Zn increased. This result suggests that the orientation relationship of {110}Fe//{0001}Zn is difficult to be completed in the middle of deposition with increasing the angle of inclination of {110} Fe plane from the surface of substrate, as a result, the epitaxial growth of Zn easily changes to random growth. On the other hand, Zn deposited on the cold rolled steel sheets with small grain size showed preferred orientation of {0001} regardless of orientation of Fe, which indicates that the orientation of deposited Zn is more affected by deposition overpotential than by the orientation of Fe substrate. Although the strain was introduced to the high purity electrolytic iron with sandblasting, the orientation relationship of {110}Fe//{0001}Zn hardly changed with sandblasting, showing that the strain of Fe substrate has scarcely effect on the orientation relationship between Fe and deposited Zn.

Information related to the author
© 2018 The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top