鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
製銑
回転強度試験における時系列3D scanningと固気液三相の移動解析によるコークス変形が及ぼす充填層内流れ特性評価
夏井 俊悟 澤田 旺成照井 光輝柏原 佑介菊地 竜也鈴木 亮輔
著者情報
ジャーナル オープンアクセス HTML

2018 年 104 巻 7 号 p. 347-357

詳細
抄録

A 3D scanning technique was applied for understanding coke shapes obtained by a rotational strength test, and a numerical dynamic analysis based on the multi-sphere type discrete element method was carried out to clarify the influence of coke degradation on the packed structure. We constructed a trickle flow simulation of molten slag via the smoothed particle hydrodynamics model, and the liquid-gas permeability characteristics exhibited by the coke shapes in the lower part of the blast furnace are discussed accordingly. Coke diameter decreased due to collisions between particles, via the progress of surface- and volume-destruction, and that the particles subsequently became sphere-like in shape. Static holdup of molten slag showed a decreasing tendency with the coke degradation progress, as the void shape and holdup site became spatially uniform as sphericity increased. In the case of packed bed formed by the initial low sphericity or large-sized cokes, the size of the air gap was maintained, although the flow path was non-uniform. Therefore, even if the large amount of holdup did not block the gaseous main flow, in the case of lower coke strength, the sphericity increased due to the deformation progress, and void uniformity could be retained. However, the existence of many narrow void regions remarkably decreased the gas permeability.

Gas velocity distributions with or without holdup droplets in each packed bed. Fullsize Image
著者関連情報
© 2018 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top