鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
鋳造・凝固
FEMによる連続鋳造機内の割れシミュレーション
外石 圭吾 三木 祐司菊池 直樹
著者情報
ジャーナル オープンアクセス HTML

2018 年 104 巻 9 号 p. 486-492

詳細
抄録

In continuous casting of steel, prevention of surface cracks on the slab is an important issue. For quantitative evaluation of cracks that occur in the continuous casting machine, the critical strain for crack generation was analyzed by a high-temperature tensile test and FEM simulation. Based on obtained material property values, a model for crack generation by tensile strain was constructed. The local strain at the notch relative to the strain in the whole specimen was determined by a simulation of the tensile test, and the critical strain for crack generation εc was calculated. The results of a crack simulation by FEM using εc showed that the average strain until crack initiation was small under deep notch conditions. The average strain at crack generation calculated by the simulation model was in good agreement with the value measured in the tensile test. As a result of the simulation applying temperature distribution to the slab, the depth change of the oscillation mark was more influential to crack formation than the change of the width. The effect of the shape of the oscillation mark on the crack cannot be organized only by the stress concentration factor. Simulation analysis that includes the shape of the oscillation mark is considered to be effective. Using this simulation model, it is possible to predict the generation of cracking when the temperature distribution or the oscillation mark shape in actual operation changes.

著者関連情報
© 2018 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top