鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
力学特性
多結晶フェライト鋼のひずみ時効現象における固溶Cと結晶粒界の役割
小野 義彦 船川 義正奥田 金晴瀬戸 一洋海老澤 直樹井上 耕治永井 康介
著者情報
ジャーナル オープンアクセス HTML

2019 年 105 巻 4 号 p. 452-461

詳細
抄録

The roles of solute C and the grain boundary in the strain aging phenomenon of polycrystalline ferritic steel were investigated using Nb-bearing ULC steel sheets with a relatively low solute C content of 1-3 mass ppm and ferrite grain sizes of 9.5 μm and 183 μm at aging temperatures from 70 to 400ºC. The steels exhibited two definite hardening stages. The first hardening stage appeared in both fine- and coarse-grained specimens, in which the increase in YP (ΔYP) became saturated at around 30 MPa. From the apparent activation energy and hardening kinetics, the hardening mechanism was assumed to be dislocation pinning by solute C atoms. The second hardening stage, significantly appeared in fine-grained specimens accompanying a large increase in the Hall-Petch coefficient; ΔYP was quite large, reaching 90 MPa. Fine precipitates were not detected in aged specimens observed by TEM and 3DAP. Segregation of solute C to the grain boundaries and diffusion of Fe atoms in the grain boundaries were proposed as possible mechanisms of this second hardening. Grain-boundary hardening is assumed to be one of the hardening mechanisms in the strain aging of the polycrystalline ferritic steel.

著者関連情報
© 2019 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top