鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
鋳造・凝固
Nb添加鋼における,NbC析出物およびオーステナイト粒径の高温脆化への影響評価
古米 孝平 Xiang WangHatem ZurobAndre Phillion
著者情報
ジャーナル オープンアクセス HTML

2020 年 106 巻 7 号 p. 429-437

詳細
抄録

The hot ductility of steels containing 0–0.06 wt.%Nb has been evaluated through γ grain growth experiments and hot stage tensile tests of the α + γ two phase region in order to clarify the roles of NbC precipitation and γ grain size evolution resulting from Nb-initiated solute drag on hot ductility in this important material property. The experimental results show that (1) a decrease in γ grain size as a result of Nb-initiated solute drag improves hot ductility, (2) for a given γ grain size, hot ductility decreases with increasing Nb content because the corresponding increase in NbC precipitation fraction increases strength, and (3) the variation in ductility with Nb content is smaller when the γ grain size is smaller. These competing effects of γ grain size and NbC precipitation affect the strain incompatibility between the α and γ phases, leading to the onset of surface cracking during continuous casting when the incompatibility is high. The underlying mechanisms controlling ductility in Nb-containing steels are demonstrated using a model that partitions strain between the α and γ phases.

Fullsize Image
著者関連情報
© 2020 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top