Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Transformations and Microstructures
Effect of Solute Carbon on the Evaluation of Dislocation Density in as Quenched Martensite by X-ray Diffraction
Maho IwamuraMasahiro Tsukahara Osamu IdoharaYoshitaka MisakaSetsuo Takaki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 107 Issue 10 Pages 853-862

Details
Abstract

X-ray diffraction analysis is one of powerful tools on the dislocation analysis and this method can be applied reasonably for many metals with isotropic crystal structure such as bcc and fcc. In this study, modified Williamson-Hall analysis was applied for martensitic steels containing 0.006 – 0.26 mass% carbon and proved that the value of dislocation density increases with increasing the carbon content. However, martensitic steels containing solute carbon have bct structure characterized by different lattice constants on a-axis and c-axis. With increasing solute carbon, a-axis shrinks but c-axis is elongated. This leads to the peak séparation in an X-ray diffraction peak and causes an increase of the full-width at half-maximum (FWHM) in the diffraction peak. This suggests that the value of dislocation density is over estimated due to the effect of peak separation in as quenched martensitic steels with solute carbon. It was found that the increment of apparent dislocation density Δρ’ is expressed by the following equation as a function of the amount of solute carbon (mass%C), independent of the values of true dislocation density and the screw component of dislocation.

Δρ[m−2] =1.68×1017 (mass%C)2

As a result, it is concluded that the true dislocation density is constant at 4.5×1015 m2 in martensitic steels which have solute carbon more than 0.14 mass% at least.

Fullsize Image
Content from these authors
© 2021 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top