鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
計測・制御・システム技術
データサイエンスに基づく鉄鋼プロセス設備のレベル別異常予兆検知技術
平田 丈英 松下 昌史飯塚 幸理鈴木 宣嗣
著者情報
ジャーナル オープンアクセス HTML

2021 年 107 巻 11 号 p. 897-905

詳細
抄録

In steel making processes, influence of an equipment fault on production operation is significant. It is strongly required to detect an equipment fault at an early stage and to prevent the damage. Therefore, fault detection technique for steel making facilities based on data science is developed as an online-monitoring system. One of main features of the developed system is hierarchical monitoring consisting of three levels such as an entire process, facilities and sensors. Another is display of heat-mapping according to the degree of anomaly for huge number of monitoring items. Some anomaly signs at the hot rolling process where the system has been developed are successfully detected.

Fullsize Image
著者関連情報
© 2021 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top