鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
特集号「インフラ構造物の経年劣化に対する維持管理の最適化に向けて」
NaCl溶液乾湿繰り返し環境における純鉄および鋼材の腐食挙動と腐食形態より求めた腐食速度
野村 耕作兵野 篤千葉 誠 高橋 英明
著者情報
ジャーナル オープンアクセス HTML

2021 年 107 巻 12 号 p. 1047-1056

詳細
抄録

Steels are widely used for structural material of bridges. Some of bridges have been used for more than half century, and degradation of bridges become severe problems, due to the atmospheric corrosion of metallic materials. Especially, atmospheric corrosion of steel is caused by cycles of wet and dry conditions, and accelerated by evaporation of raindrops containing Cl- ions. In this study, corrosion of pure iron and steels is investigated under wet-dry cycling condition with NaCl solution by scanning electron microscopy (SEM) and 3D-optical microscopy (3D-OM). Initially 20 mm3 of 0.02 M-NaCl solution was dropped on pure Fe, SM490Y, and SMA490AW specimens, and then, droplets of water were dropped at the same position of the specimens at 9 min intervals for 150 cycles.

All specimens were covered with white, black, and reddish corrosion products at the water-dropped position, and the reddish ones became major with increasing water-dropping cycles. SEM images after corrosion product removal showed pitting corrosion on all specimens, and the corrosion was more severe at the edge areas of water-dropped position than at the center areas. 3D-OM obtained after 150 cycles showed that the deepest pit produced at the edge areas were in the order of Fe >> SM490Y = SMA490AW, and that the total volume loss at the edge areas by corrosion were in the order of Fe > SMA490AW > SM490Y. The corrosion mechanism can be explained by higher rates of O2 supply at the edge areas and denser corrosion products on steel than on Fe.

Fullsize Image
著者関連情報
© 2021 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top