鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
相変態・材料組織
オーステナイト系ステンレス鋼の疲労前駆段階の組織変化に及ぼす水素の影響
山村 実早保 中村 潤大村 朋彦秦野 正治
著者情報
ジャーナル オープンアクセス HTML

2021 年 107 巻 3 号 p. 237-246

詳細
抄録

Type 304 stainless steel is typical austenitic one where fatigue life is deteriorated in hydrogen environments. There are few studies for fatigue crack initiation process compared to those of fatigue crack propagation. In this study, the authors experimentally investigated influence of hydrogen on dislocation structures and phase distribution before the fatigue crack initiation. A solution heat treated Type 304 plate was used as a sample, and round-bar fatigue specimens with a notch were machined. Fatigue tests were performed for the hydrogen-charged or -free specimens in fully reversed loading conditions at room temperature. The test was terminated before the crack initiation. Then, the dislocation structures and the phase distribution underneath the notch root were analyzed by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). For the hydrogen-charged specimen, planar dislocations were observed in the TEM images. With increase in fatigue cycles, Area of stacking faults (SFs) increased and ε martensite (εM) appeared on the (111)γ planes. α’ martensite (α’M) were observed at crossover sites of the εM phases on different (111)γ planes. In EBSD analysis, the α’M was often observed in a plate form parallel to the (111)γ planes. For the hydrogen-free specimens, on the other hand, dislocations cell structures and massive α’ M were observed in the TEM images. Neither SFs nor εM were formed. Thus, hydrogen increases dislocation planarity and changes martensitic transformation from γ to α’M, or γ to α’M through ε, resulting in different α’ M morphologies.

Fullsize Image
著者関連情報
© 2021 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top