Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Transformations and Microstructures
Three-dimensional EBSD Analysis and TEM Observation for Interface Microstructure during Reverse Phase Transformation in Low Carbon Steels
Kengo Hata Kazuki FujiwaraKaori KawanoMasaaki SugiyamaTakashi FukudaTomoyuki Kakeshita
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 107 Issue 3 Pages 247-256

Details
Abstract

For the development of advanced steels, phase transformation from ferrite(α) to austenite(γ) is essentially important to control the austenite phase in the heating process. Formation of austenite during the initial stage of α→γ transformation from the recrystallized ferrite in low carbon steel has been studied from the view-point of the orientation relationships and the interphase boundary structure. At high temperature, the in situ electron backscattering diffraction (EBSD) analysis of austenite grain growth during the α→γ transformation indicates that the different migration behaviors according to different α/γ interfaces, derive from the interfacial coherency with the specific orientation relationships. The orientation and microstructure of the interface between ferrite and austenite have been investigated using the 3D crystal orientation analysis and transmission electron microscopy (TEM) observations. When the crystal orientation relationship between ferrite and austenite grain are close to the Kurdjumov–Sachs relationship, the grain boundary normal itself is also close to the {111}α and {011}γ, respectively. The microstructure of these interfacial planes is revealed to be flat using 3D-EBSD and TEM analysis. These coherent planes are strongly connected to the formation of the austenite phase on heating and also affect the slow migration of the grain-growth process.

Fullsize Image
Content from these authors
© 2021 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top