鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
高炉内コークス粉率推定モデルの開発
久恒 あや 照井 光輝廣澤 寿幸樋口 隆英深田 喜代志
著者情報
ジャーナル オープンアクセス HTML

2022 年 108 巻 10 号 p. 713-720

詳細
抄録

Improving operation performance of blast furnaces is necessary to reduce CO2 emissions and pig iron costs. One of the important factors for the operation is keeping gas permeability well in the blast furnace. Coke fines affect gas permeability and the operation condition become worse, therefore clarification and prediction of the generation behavior of coke fines in blast furnaces are desired.

In the present study, first of all, new evaluation method was developed to quantify coke abrasion behavior. And then, we proposed the prediction expression to estimate the amount of coke fines based on the results of abrasion experiments using new method. Finally, the distribution of coke fines in the blast furnace was numerically simulated by coupled 2D blast furnace model and Discrete Element Method (DEM) using proposed equation.

The results are summarized as follows:

1) The influential factors of coke abrasion were mechanical conditions like shear distance or compressive stress, and coke quality like strength (Drum Index, DI) or porosity. The amount of coke fines increased by rising shear distance, compressive stress and porosity or decreasing DI.

2) According to numerical simulation using these models, coke fines generated around peripheral area in lower shaft, belly and bosh. In addition, the total amount of coke fines increased with the decrease of DI. These results are in accordance with the conventional knowledge.

The distribution of coke fines in the blast furnace became predictable. This evaluation will lead optimum burden distribution and ideal coke quality to achieve highly efficient operation of blast furnaces.

Fullsize Image
著者関連情報
© 2022 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top