Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Hydrogen Embrittlement Mechanism of Ultrafine-grained Iron with Different Grain Sizes
Satoshi MitomiHideaki Iwaoka Shoichi Hirosawa
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 108 Issue 11 Pages 864-876

Details
Abstract

To investigate the effect of grain sizes on hydrogen embrittlement of 4N-purity iron, miniature tensile tests were conducted after hydrogen charging for ultrafine-grained specimens produced by high-pressure torsion and subsequent annealing. Hydrogen embrittlement indexes defined from reduction of area were increased with decreasing grain size, and shear-type fracture was occurred with fine dimples on the fracture surface of the specimen with a smaller grain size. The formation and growth of microvoids at triple junctions of grain boundaries ahead of propagated cracks were responsible for such earlier shear-type fracture because necking between adjacent microvoids is more likely and extensively occurred. In the specimens with larger grain sizes or without hydrogen charging, on the other hand, local coalescence and growth of microvoids were predominant due to longer distances between triple junctions, resulting in void coalescence-type fracture with coarser dimple patterns. Therefore, hydrogen atoms introduced by hydrogen charging are considered to enhance the formation of deformation-induced vacancies in ultrafine-grained iron, resulting in shear-type fracture with finer dimple patterns.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top