Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Mechanical Properties
Effect of Cold Rolling on the Creep Rupture Strength of 12Cr-5.4W Ferritic Steel with δ-ferrite
Katsuhiro Sato Yohei SakakibaraKyohei Nomura
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 108 Issue 2 Pages 131-140

Details
Abstract

This study examined cold rolling (20%) effects on the creep rupture strength of 12Cr-5.4W ferritic steel with martensite and δ-ferrite at 700 °C. Creep rupture strength of the as-received steel was equal to or greater than that of Gr.92 steel under 100-50 MPa, but cold rolling decreased the creep rupture strength by as much as 10%. Microstructure observations of crept steels revealed coarsening of the Laves phase by cold rolling in δ-ferrite but not in martensite. This finding suggests that the Laves phase coarsening in δ-ferrite is related to short-circuit diffusion because fine sub-grain structures were observed inside δ-ferrite grains in the cold-rolled steel after creep. Also, the martensite lath structure in the cold-rolled steel recovered quickly. Collectively, these cold-rolling-related phenomena of microstructural degradations are inferred as factors decreasing the creep rupture strength. In the as-received steel, some creep voids were observed in martensite: most were observed adjacent to coarse vanadium nitrides. By contrast, creep voids in the cold-rolled steel were most numerous near the martensite – δ-ferrite interface. It was suggested that nucleation of creep voids near the interface in the cold-rolled steel was attributed to mechanisms such as the Laves phase size and distribution at the interface and stress concentration effects of dislocations that were piled up toward the interface.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top