Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Mechanical Properties
Mn Depletion Behavior at Oxide/matrix Interface in Low Oxygen Weld Metal of Low Carbon Steel
Ryuichi Homma Genichi ShigesatoMasaaki FujiokaKota KadoiHiroshige Inoue
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 108 Issue 3 Pages 211-223

Details
Abstract

The structure of the oxide as a nucleus for intragranular ferrite formation in the low O weld metal and the formation mechanism of Mn depleted zone (MDZ) at the oxide/matrix interface were studied using liquid-tin quenched specimens at high-temperature conditions during laser welding of low carbon Ti added steel. At a high temperature of 1720 K, MDZ is formed around the complex oxides of (Ti,Mn)3O5, (Ti,Mn)2O3, and liquid phase oxides (containing Si, Mn, Ti, and S). The width of the MDZ increases with cooling, and at low temperatures (1275 K) MDZ is formed around the complex oxide consisting mainly of (Ti,Mn)2O3 with MnS and Si-Mn oxides. These MDZs are formed all around the complex oxides, regardless of the kind of oxide. The formation of MDZs is considered to promote the ferrite transformation around the oxides. The equilibrium Mn concentration in each of the oxide phases increases during the cooling process and the thermodynamically stable phase changes from (Ti,Mn)3O5 with a low equilibrium Mn concentration to (Ti,Mn)2O3 with a high equilibrium Mn concentration, which drives the diffusion of Mn from the matrix phase to the oxide. In this process, MDZs are formed all around the complex oxides.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top