Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Review
Grain Size Dependence of Secondary Creep Rate in Pure Metals and Single-phase Alloys
Satoru Kobayashi
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 109 Issue 3 Pages 150-157

Details
Abstract

Grain size dependence of secondary creep rate in pure metals and single-phase alloys and the mechanisms/models to interpret the dependence have been reviewed. Two types of the grain size dependence were reported, both of which show a negative dependence approximately below 100 μm. The model proposed by Garofalo in 1960s assumes that the density of dislocations generated at grain boundaries and sub-boundaries determines the secondary creep rate, which is not experimentally supported. Mclean’s model considers preferential subgrain growth near grain boundaries, which might be important in practical steels and alloys with sub-grains such as high Cr ferritic heat resistant steels. Grain boundary sliding (GBS) and its accommodation process in grain is considered as a source of the negative grain size dependence. A finite element modeling performed by Crossman and Ashby, which simulated a deformation process where GBS is accommodated by the power law creep process in the grain interior, indicates that the negative grain size dependence cannot be interpreted by the accommodation process. Based on substructure observation and internal stress measurements, Terada established a “core and mantle” model where the mantle region near grain boundary has no internal stress. This model reasonably interprets the negative grain size dependence.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top