Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Influence of Nitrogen Content and Deformation Temperatures on Dislocation Structures in Austenitic Stainless Steels
Soh YabukiYasuhito Kawahara Shunya KobatakeChikako TakushimaJun-ichi HamadaKenji Kaneko
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 110 Issue 10 Pages 779-787

Details
Abstract

Nitrogen-added austenitic stainless steels exhibit excellent work-hardenability due to planar slips of dislocations. Two mechanisms of the planar slip have been proposed so far: glide plane softening mechanism and stacking-fault energy (SFE) reduction mechanism, which are thought to be dependent on nitrogen content and deformation temperature. In this study, conventional TEM, STEM-EDS and HR-STEM characterizations were carried out to clarify the influences of deformation temperature and nitrogen content on the dislocation characteristics of austenitic stainless steels. In the case of the nitrogen-added steel, the dislocation configurations became planar at a high temperature, 973 K. HR-STEM analysis revealed that SFE decreased with N addition and increased with temperature increase. Weak-beam TEM and HR-STEM analyses revealed that the planar dislocations were composed of 60° mixed-dislocations and SFs at room temperature, and edge-dislocation and SFs at 973 K. These results suggested that the edge components of defects interacted elastically with N and N-Cr pairs and contributed to the origin of the planar slips.

Fullsize Image
Content from these authors
© 2024 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top