2024 年 110 巻 14 号 p. 1034-1042
Steel manufacturing often needs to improve its stability margin due to logistics delays, increased manufacturing costs, and sudden production halts. Keeping a certain level of stability margin in steel production is a practical policy to avoid serious deviation from a steady state in operation. This paper proposes a resource-buffered scheduling method based on Critical Chain / Buffer Management (CC/BM) and its fundamental mathematical models. In this study, we consider a planning decision-making chain from raw material blend planning to hot-roll scheduling through cast scheduling in a steel plant. A series of computational experiments demonstrate the proposed method as a decision-making process enhancing “resiliency” in steel-making operations.