鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
光学顕微画像の機械学習による鋼材腐食生成物の組成解析
辻 湧貴平澤 晃大庄司 淳北川 裕一長谷川 靖哉伏見 公志
著者情報
ジャーナル オープンアクセス HTML

2024 年 110 巻 15 号 p. 1166-1178

詳細
抄録

Analysis of the corrosion distribution and composition of corrosion products on steel surfaces using supervised machine learning of optical microscopic images was investigated. The accuracy of the artificial intelligence in evaluating the composition of iron compound reference samples was affected by the illumination intensity and surface roughness during image capture. The evaluation accuracy was high for compounds with a wide distribution of R value such as Fe2O3 and FeOOH, but low for compounds with a narrow distribution such as Fe3O4. The results of wet-dry cycling tests on weathering steel with NaCl particles on the surface showed that the transition of corrosion products during the corrosion progress can be analyzed from optical microscope images.

Fullsize Image
著者関連情報
© 2024 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top