Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Influence of Mo and W on Solidification Microstructure Formation for Ni-hard Type Cast Iron
Ryohei NishinoYuki TanakaKazunori KamimiyadaKohei MorishitaHirofumi Miyahara
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 110 Issue 9 Pages 653-661

Details
Abstract

The solidification microstructure of Ni-hard type cast iron was investigated to evaluate the influence of Mo and W additions on the formation of carbides and graphite. The specimen was prepared based on the composition of Fe-3.3%C-0.8%Si-0.8%Mn-4.4%Ni in mass%, and Mo or W was added to the reference specimen to a maximum of 6.7%Mo or 2.9%W, respectively. Each alloy was cast into a permanent mold for the microstructural analysis. The solidification process of each alloy was also investigated by thermal analysis and quenching experiments. According to EDS and XRD analyses, it is revealed that the solidification microstructure of standard Ni-hard type cast iron consists of primary γ, γ+M3C eutectic structure and graphite, and the addition of Mo and W provides γ+M2C eutectic structure. The further addition of Mo and W increases the amount of γ+M2C eutectic structure and decreases the amount of γ+M3C eutectic structure, whereas it has little effect on the amount of primary γ. The quenching experiment reveals the graphite formation as eutectic structure between the formations of γ+M2C eutectic structure and γ+M3C eutectic structures. The addition of Mo reduces the amount of graphite, while addiction of W increases the amount of graphite. The influence of each alloying element on graphite formation could be estimated by carbon solubility and the composition of the residual liquid.

Fullsize Image
Content from these authors
© 2024 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top