鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
ブリッジングに起因する凝固収縮流によって生成するマクロ偏析に及ぼす凝固組織形態の影響
佐々木 心人棗 千修
著者情報
ジャーナル オープンアクセス HTML

2025 年 111 巻 9 号 p. 458-466

詳細
抄録

Casting experiments of Al–10 wt.%Cu alloy were carried out using an impreved Satou mold (iST mold). The mold was a rectangular parallelepiped (inner dimensions 30 mmT × 50 mmW × 140 mmH), with a porous alumina plate on the wide side of the mold and a chill set at a height of 70 to 80 mm from the bottom. Four metal materials (stainless, steel, brass, and copper) with different thermal conductivities were used for the chill. To investigate the effect of bridging on the formation of macrosegregation, X-ray CT analysis of the macrosegregation distribution and morphology, observation of micro- and macro-structures, and analysis of temperature and solid fraction distribution were performed for samples obtained under each condition. Bridging formed near the chill under all conditions, and channels consisting of positive segregation and cavities were formed below it. The volume fraction of positive segregation decreased as the thermal conductivity of the chill material increased. In the samples using stainless and copper as chill materials, the volume fractions of positive segregation were 73.8% and 11.7%, respectively. Consequently, we confirmed that the bridging-formed conditions have a significant effect on the formation of macrosegregation.

Fullsize Image
著者関連情報
© 2025 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top