鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
高窒素オーステナイトステンレス鋼の組織と機械的性質に及ぼす時効の影響
中澤 崇徳星野 智史山口 啓片田 康行
著者情報
ジャーナル オープンアクセス

2007 年 93 巻 3 号 p. 240-246

詳細
抄録

The effect of aging on microstructures and mechanical properties of 1%N-23%Cr-4%Ni-2%Mo austenitic stainless steel aged at 600∼800°C for up to 1000 h were investigated with electron microscope, analysis of extracted residues, ferrite scope, and mechanical tests such as hardness, tensile, and Charpy impact. Chromium nitrides precipitated on grain boundary at the aging temperature below 650°C, while lamellar precipitates, which were composed of plate like Cr2N and martensite, were formed above 700°C. σ phase precipitated at 700°C for 1000 h and above 750°C for longer than 100 h. Martensite was also observed around σ phase, and the total amount of martensite was 40-50% after aging at 700-800°C for 1000 h. Age hardening was observed above 700°C and hardness, which increased with aging time and temperature, reached about Hv 500 after aging at 800°C for 1000 h. Increase in tensile strength by aging was higher than that in proof strength, because of pronounced increase in work hardening rate by aging. Strengthening by aging depended mainly on the amount of lamellar precipitates and additionally on σ phase and its surrounding martensite at higher temperature. Tensile ductility and impact toughness were decreased by aging due to lamellar precipitates and σ phase.

著者関連情報
© 2007 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top