鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
Fe–Si合金における繰り返し平面曲げ疲労中の転位下部組織の発達と疲労破壊挙動
潮田 浩作後藤 正治小松 芳成星野 明紀竹林 重人
著者情報
ジャーナル オープンアクセス

2008 年 94 巻 8 号 p. 321-330

詳細
抄録
The evolution of dislocation structures was investigated by TEM in Fe–Si alloys with 0, 0.5 and 1.0 mass% Si during a cyclic bending test in conjunction with fatigue crack behavior. The addition of Si increased the fatigue strength. The evolution of dislocation structures was significantly influenced by the Si addition. Namely, in the steel without Si the dislocation cell structure develops, whereas in the steel with 1 mass% Si the vein structure develops which is considered to lead to increased fatigue strength. The dislocation cell structure observed in the steel without Si is postulated to be caused by the easy cross slip of dislocations during cyclic deformation, whereas the vein structure developed in the steels with Si is inferred to be caused by the difficulty in cross slip due to the decrease in stacking fault energy. Furthermore, the Si added steel shows a characteristic structure in a manner such that the dislocations are free in approximately 0.5 μm zones along grain boundaries. The examinations of the fatigue fracture surface revealed that the transgranular fracture takes place in steel without Si, whereas in steel with 1 mass% Si many intergranular cracks were observed just beneath the top surface. The intergranular cracks in the 1 mass% Si steel were thought to be caused by the fact that a) strains are dispersed within grains owing to the vein structure and b) micro cracks are initiated and propagated along grain boundaries due to the dislocation free zones.
著者関連情報
© 2008 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事
feedback
Top