鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
クロム添加による極低炭素冷延鋼板の降伏強度変化
船川 義正宇城 工
著者情報
ジャーナル オープンアクセス

2010 年 96 巻 4 号 p. 162-171

詳細
抄録
The relationship between ferrite grain diameter and upper yield strength was investigated for cold-rolled and annealed ultra low carbon steel sheets containing various chromium contents from 0 to 23%. The upper yield strengths were dropped with annealing temperature and the tangent of the change in the yield strength was decreased with increasing in chromium content. The coefficient in Hall–Petch equation decreased linearly with chromium content. This is attributed to lowering solute carbon content at grain boundaries with precipitation of chromium carbide since the decrease was not due to ferrite region hot-rolling nor to α′ phase precipitation in high chromium steel. While friction stress (σ0) in Hall–Petch equation of air-cooled sheets after annealing showed the minimum at chromium content of 5%, σ0 of the lower chromium content steels increased and became to show linear relationship for chromium content after 150°C aging. This result indicates that σ0 increases with chromium content by solid solution strengthening. The reason why the minimum σ0 is exhibited in the 5% chromium steel air-cooled after annealing is that the amount of decrease in σ0 by retardation of aging during air-cooled process is larger than that of solid-solution strengthening by chromium.
著者関連情報
© 2010 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top