鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
高炉操業およびコークス反応挙動に及ぼすコークス反応性の影響解析
埜上 洋山本 哲也宮川 一也
著者情報
ジャーナル オープンアクセス

2010 年 96 巻 5 号 p. 319-327

詳細
抄録

Recent years various trials to improve operation efficiency of blast furnace by combining the decrease in operation temperature and the increase in reaction rates. An increase in coke reactivity is one of the approaches to decrease thermal reserve zone temperature in blast furnace. Although the mechanism to improve the efficiency by increasing the reactivity is explained by the static models like the Rist diagram, these models are incapable of estimating the temperature decrease by the reactivity increase. In this study numerical simulations of blast furnace operation using a mathematical model based on the kinetic theories were performed. In the simulations, descending motions of burden materials were tracked and the reaction behaviors of coke particles along the trajectories were discussed in details through the method of chemical reaction engineering. The results showed that the increase in the coke reactivity lowers the temperature of upper part of the furnace. In the studied range of the reactivity, the reaction scheme of the solution loss reaction in thermal reserve zone varied from uniform reaction to surface reaction with increase in reactivity. Although the coke consumption by the solution loss reaction increases, the solution loss reaction in the central part of the coke particle is suppressed by the increase in coke chemical reactivity.

著者関連情報
© 2010 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top