Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Alloy Design of 5%Mn-Cr-C System Austenitic Steel
Hirokazu TsukaharaTakuro MasumuraToshihiro TsuchiyamaSetsuo TakakiKoichi NakashimaKazukuni HaseShigeru Endo
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2013 Volume 99 Issue 8 Pages 509-516

Details
Abstract

The range of chemical composition for obtaining austenitic single structure was defined in medium-manganese carbon steels. Among the defined composition, Fe-5%Mn-4%Cr-(0.8~1.4)%C was selected as the optimum range of composition to form stable austenitic structure. The tensile property and deformation substructure were investigated in the austenitic steels with corresponding composition. As a result, the work hardening behavior of the steels was varied depending on the carbon content, which was closely related with the development of deformation microstructure. In the 0.8%C steel, deformation-induced martensitic transformation as well as deformation twinning caused large work hardening until fracture took place. With increasing carbon content, namely increasing SFE, the deformation mode tended to shift to dislocation slipping, resulting in the lower work hardening rate. This trend seems to be similar to conventional TWIP steel where the work hardening behavior is explained with SFE.

Content from these authors
© 2013 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top