鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
組織不均質を考慮した三次元延性損傷シミュレーション法 −複相組織材料の延性予測−
大畑 充庄司 博人南 二三吉
著者情報
ジャーナル オープンアクセス HTML

2013 年 99 巻 9 号 p. 573-581

詳細
抄録

The effort of this study is to establish simulation method for predicting the effect of mechanical and morphological characteristics of each constituent phase of two-phase steel on two types of ductile properties that has been found to be ductile crack growth resistance controlling mechanical properties; one is critical local strain that controls shear mode ductile cracking, and the other is stress triaxiality dependent ductility. Notched micro-tensile tests for ferrite-pearlite two-phase steel exhibits that ductile failures from specimen center with dimple mode and notch-root surface with shear mode are both controlled by micro-void nucleation at softer ferrite phase near ferrite/pearlite boundary. 3D micro-structural FE-model is developed for analyzing the stress/strain localization behaviors associated with heterogeneous microstructure in strength, and ductile damage model for reproducing damage evolution up to micro-void/micro-crack formation is proposed. The 3D meso-scopic damage simulation method is applied for simulating ductile cracking behaviors of notched tensile specimens of two-phase steel. The damage evolution associated with micro-structural heterogeneity up to ductile cracking from specimen center as well as notch-root surface is well predicted.

著者関連情報
© 2013 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top