鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

イオンプレーティング法により模擬したMn系高強度冷延鋼板表面におけるMn酸化物の存在形態とリン酸塩処理性の関係
増岡 弘之古谷 真一竹山 隼人平 章一郎松崎 晃
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: TETSU-2019-007

この記事には本公開記事があります。
詳細
抄録

It is well known that Si, Mn and B, the alloying elements for high strength steel sheets, easily form oxides on the steel surface during annealing in a reducing atmosphere, and those oxides have a large influence on the surface performance of steel sheets, such as phosphatability. In this work, we discovered that the oxidation behavior of Mn-added high strength cold-rolled steel sheets could be simulated on mild steel sheets by using an ion plating method and investigated the relationship between the morphology of Mn oxides and phosphatability under the condition that both the amount and kind of Mn oxides were fixed. In a simulated Mn-O layer, fine surface oxides, which covered most of the steel surface, were observed after annealing. On the other hand, in a Mn-B-O layer, large globular surface oxides were observed on the steel surface, and the Fe surface was partially bare. The B-Mn compound oxide is considered to be in a molten phase during annealing because the melting point of the compound oxide is lower than the annealing temperature, and as a result, it is thought that large B-Mn compound oxides coagulate and grow during annealing. In addition, it was found that the large B-Mn compound oxides (about 500 nm) interfere with steel dissolution in the phosphate solution. These results demonstrate the importance of controlling the morphology as well as the amount and kind of surface oxides for obtaining good phosphatability of Mn-added high strength cold-rolled steel sheets.

著者関連情報
© 2019 一般社団法人 日本鉄鋼協会
feedback
Top