鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

二相ステンレス鋼の溶接金属における水素割れ発生特性に及ぼす微視組織の影響に関する数値解析
荻田 玄松本 幸樹望月 正人三上 欣希伊藤 和博
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: TETSU-2019-102

この記事には本公開記事があります。
詳細
抄録

Duplex stainless steels and their deposited weld metal have ferrite and austenite microstructure, which have material properties that are different. In addition, the microstructure of the base metal and weld metal are clearly different; therefore, it affects the hydrogen diffusion and accumulation, and hydrogen-induced cracking behavior at the microstructural scale. In this study, the influence of the microstructure on hydrogen-induced cracking behavior of duplex stainless steel weld metal was investigated. Specimens of duplex stainless steel weld metal were prepared and slow strain rate tensile test was performed after hydrogen charging. Cracks were observed at boundaries of ferrite and austenite phases. In order to clarify the stress and hydrogen concentration distribution at the microstructural scale, a microstructure-based finite element simulation was performed. A finite element model based on a cross sectional observation of the microstructure was designed to calculate the stress and hydrogen concentration distribution. The simulation result showed that the hydrogen accumulation occurs at ferrite/austenite boundaries, which corresponded to the locations where cracks were observed in the experiment. On the other hand, the hydrogen concentration at the accumulation site in the weld metal was low compared to that in the base metal. Therefore, the influence of the phase fraction and the stress-strain curves of the ferrite and austenite phases on the hydrogen concentration was investigated by the proposed numerical simulation. It was demonstrated that both the phase fraction and stress-strain curves have significant influence on the microscopic distribution of hydrogen concentration.

著者関連情報
© 2020 一般社団法人 日本鉄鋼協会
feedback
Top